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When the intensity of turbulence is increased (by increasing the Reynolds number,
e.g., by reducing the viscosity of the fluid), the rate of the dissipation of kinetic energy
decreases but does not tend asymptotically to zero: it levels off to a nonzero constant
as smaller and smaller vortical flow structures are generated. This fundamental property,
called the dissipation anomaly, is sometimes referred to as the zeroth law of turbulence.
The question of what happens in the limit of vanishing viscosity (purely hypothetical in
classical fluids) acquires a particular physical significance in the context of liquid helium,
a quantum fluid which becomes effectively inviscid at low temperatures achievable in the
laboratory. By performing numerical simulations and identifying the superfluid Reynolds
number, here we show evidence for a superfluid analog to the classical dissipation anomaly.
Our numerics indeed show that as the superfluid Reynolds number increases, smaller and
smaller structures are generated on the quantized vortex lines on which the superfluid
vorticity is confined, balancing the effect of weaker and weaker dissipation.

DOI: 10.1103/PhysRevFluids.8.034605

I. INTRODUCTION

It is well known from experiments and numerical simulations of incompressible, homogeneous,
and isotropic turbulence that, if the fluid’s kinematic viscosity ν tends to zero (or, equivalently,
if the Reynolds number tends to infinity), the average dissipation rate of turbulent kinetic energy
does not decrease to zero, but tends to a finite constant [1,2]. In other words, the limit of the
incompressible Navier-Stokes equation for vanishing viscosity is not the Euler equation, as one
would naively expect. This dissipation anomaly led Onsager [3,4] to conjecture that the solution
of the Euler equation is not a smooth velocity field: smaller viscosities are compensated by the
creation of motions at smaller and smaller length scales containing much vorticity but little energy.
The dissipation anomaly is thus related to the properties of turbulence at the smallest length scales
of the flow.

Progress in low-temperature physics adds a twist to this story. Turbulence with vanishing viscos-
ity, in fact, is not a mathematical idealization but can be created in the laboratory by cooling liquid
helium (either isotope 4He or 3He) below the critical temperature for Bose-Einstein condensation.
Below this temperature, liquid helium becomes a quantum fluid consisting of two interpenetrating
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components: the inviscid superfluid (associated with the quantum ground state) and a gas of thermal
excitations (the normal fluid) which carries entropy and viscosity. Upon further cooling, the amount
of thermal excitations decreases rapidly; for example, 4He becomes effectively a pure superfluid
below 1 K. Turbulence is easily generated in this superfluid component by mechanical or thermal
stirring and consists of a disordered tangle of vortex lines of quantized circulation.

Experiments and theory have revealed that, despite the two-fluid nature and the quantized
circulation, in certain regimes and at length scales larger than the average intervortex spacing �,
superfluid turbulence may show properties similar to ordinary (classical) turbulence [5,6]. A notable
example is the observation in liquid helium [7,8] of the famed Kolmogorov energy spectrum [9],
revealing an energy cascade at those large length scales. The aim of this paper is to present evidence
of an additional similarity between classical and quantum turbulence, this time occurring at the
smallest length scales of the flow: a superfluid analog of the classical dissipation anomaly. After
defining the superfluid Reynolds number, we briefly introduce our numerical model and then present
and discuss our findings.

We stress that the aim of our study is to draw a parallel between the dissipation anomaly in
classical fluids which arises from viscous effects and the dissipation anomaly in quantum turbulence
which, as we shall see, arises at decreasing temperature from the mutual friction [10] between the
vortex lines and the normal fluid. Hence, in our numerical simulations of quantum turbulence, the
temperature must be high enough that the energy is indeed dissipated by mutual friction at length
scales larger than the vortex-core radius a0, and not by phonon emission (in 4He) or excitation of
Carol-Matricon states (in 3He). These two effects would occur if the energy cascade continued
until the smallest scales of the flow (≈a0). This is why our model is not the Gross-Pitaevskii
equation which has been found to describe the dissipation of incompressible kinetic energy into
phonons at zero temperature [11].

II. MODEL

A. Superfluid Reynolds number

The first step is to identify the superfluid Reynolds number (a measure of the intensity of the
turbulence) by making careful analogy with classical fluid dynamics. Classical fluids obey the
Navier-Stokes equation. If ν is the kinematic viscosity of the fluid, and U and L are characteristic
speed and length scales of the flow, respectively, the dimensionless Navier-Stokes equation, written
in terms of the vorticity ω = ∇ × v, where v is velocity, has the form

∂ω

∂t
= ∇ × (v × ω) + 1

Re
∇2ω, (1)

where Re = UL/ν is the Reynolds number. The two terms at the right-hand side of Eq. (1) describe
respectively inertia and viscous dissipation. Turbulence arises when Re � 1, i.e., when inertia
is much larger than dissipation. In superfluid helium, vorticity is not a continuous field but is
concentrated in thin vortex lines of fixed atomic thickness a0 and fixed circulation, κ = h/m, where
h is Planck’s constant and m is the mass of the relevant boson (an atom for bosonic 4He, a Cooper
pair for fermionic 3He). The Hall-Vinen-Bekharevich-Khalatnikov (HVBK) equations [12] provide
a convenient coarse-grained, continuum model of finite-temperature superfluid hydrodynamics
of fluid parcels threaded by a large number of vortex lines. When the HVBK equations are
applied to fully developed turbulence, vortex-tension effects are negligible (being proportional to
1/Reκ = κ/(UL) � 1) and the governing dimensionless equation for the superfluid vorticity ωs is

∂ωs

∂t
= (1 − α′)∇ × (vs × ωs) + α∇ × [ω̂s × (ωs × vs)], (2)

where α and α′ are known temperature-dependent friction coefficients arising from the interaction
of vortex lines with the normal fluid (which, for the sake of simplicity, we assume to be at rest).
Following Finne et al. [13] and the classical definition of the Reynolds number, we identify the
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superfluid Reynolds number Res as the ratio of inertial forces [the first term at the right-hand side
of Eq. (2)] to dissipative forces (the second term), obtaining

Res = (1 − α′)
α

. (3)

Note that Res does not depend on extrinsic parameters (U and L) but only on temperature-
dependent fluid properties (α and α′), unlike the classical Reynolds number. We stress that
experiments and numerical simulations [13] confirm that the transition to turbulence can indeed
be predicted using Eq. (3).

B. Numerical model

The second step consists of numerical simulations of superfluid turbulence in which we compute
the dissipation rate of turbulent kinetic energy, ε, as a function of Res. We employ the well-
established vortex filament method (VFM) [14,15] which models superfluid hydrodynamics at
length scales smaller than the average intervortex distance, �, but much larger than the vortex-core
radius, a0. Unlike the HVBK framework, the VFM still describes the discrete nature of superfluid
vorticity. Vortex lines are described as one-dimensional filaments, s(ξ, t ), ξ being the arc length and
t being time, which move according to the balance of Magnus and friction forces. The velocity of a
vortex line at point s(ξ, t ) is

∂s
∂t

= vs − αs′ × vs + α′s′ × (s′ × vs), (4)

where

vs[s(ξ, t ), t] = κ

4π

∮
T

s′(ξ1, t ) × [s(ξ, t ) − s(ξ1, t )]

|s(ξ, t ) − s(ξ1, t )|3 dξ1, (5)

with the line integral (desingularized as in Ref. [16]) extending over the entire vortex configuration
T , and s′ = ∂s/∂ξ being the unit tangent at s. The local curvature (the inverse of the local radius
of curvature) is defined as ζ = |s′′|, where s′′ = ∂2s/∂ξ 2. In the VFM, each filament is discretized
into a variable number of oriented line elements held at a distance �ξ ∈ [δ/2, δ]; here we choose
δ = 0.02 cm and check results by halving δ. Each simulation is performed at temperature T in
a periodic cube of size D = 1 cm. The time integration is a Runge-Kutta fourth-order scheme,
�t = 5 × 10−3 s being the typical time step. Reference [15] gives more details, including vortex
reconnections performed algorithmically when two filaments collide.

A fully realistic model of turbulent 4He would need to couple Eq. (4) to a Navier-Stokes
equation for the turbulent normal fluid velocity vn, suitably modified to include the friction arising
from the relative motion of vortex lines and vn. Due to computational costs, such coupled dynamics
of vortex lines and normal fluid has been attempted only for particular vortex configurations [17–19]
or turbulent transients [20,21]: fully developed, statistically steady two-fluid turbulence has not been
achieved yet. Therefore, we limit this investigation to the following idealized, but computationally
simpler, form of superfluid turbulence: a tangle of vortex lines whose dissipative motion with respect
to a quiescent normal fluid is modeled by Eq. (4) at the mesoscale level. This simpler form still
allows us to make progress into a problem never addressed before. It is worth stressing that although
idealized for 4He, our model is realistic for 3He-B, whose normal component is so viscous that it is
usually assumed to be at rest with respect to the container (see Appendix A).

III. RESULTS

To establish a turbulent flow, we start with a vortex ring of radius R = D/2 at the center of the
box and inject randomly oriented vortex rings of the same radius R at random positions and at a
prescribed rate L̇inj (a similar procedure was used in the experiment of Walmsley and Golov [22],
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FIG. 1. Snapshot of vortex tangles in the saturated steady-state regime at L ∼ 120 cm−2 for (a) Res = 29
and L̇inj = 3.35 cm−2 s−1 [corresponding to pink open diamond symbols in Fig. 2(a)] and (b) Res = 1.25
and L̇inj = 22.50 cm−2 s−1 [corresponding to violet solid diamond symbols in Fig. 2(a)]. Vortex lines are
color-coded according to the local curvature ζ (in cm−1, legend at the bottom); note the larger values of ζ at
the larger Res.

although their injection was not isotropic). The injected vortex rings interact with other vortex lines
and reconnect, and a turbulent vortex tangle is formed [see Figs. 1(a) and 1(b)].

Without continual injection, the tangle would decay due to the friction suffered by the vortex lines
as they move in the quiescent normal fluid background. The statistically steady state of turbulence
which is achieved after an initial transient Teq is independent of the initial condition (injection and
dissipation balancing each other). In this state, the vortex-line density L (defined as the vortex-line
length per unit volume) fluctuates around a constant saturation value L, as illustrated in Fig. 2(b).
The diameter of the injected rings is equal to the box size and hence energy is mainly supplied to

FIG. 2. (a) Vortex-line density at the saturation L (in cm−2) vs the injection rate L̇inj (in cm−2 s−1) for
Res = 1.25 (violet), 1.34 (gray), 1.50 (black), 2.06 (cyan), 2.51 (yellow), 3.30 (red), 4.96 (brown), 9.84 (light
green), 13.09 (dark green), 19.66 (blue), and 29.00 (pink). (b) Time evolution of the vortex-line density L (in
cm−2) vs time t/τ , at L̇inj = 3.35 cm−2 s−1, for different values of Res [colors are the same as those in panel
(a)], corresponding to simulations indicated with open symbols in panel (a).
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the turbulence at scales larger than � [23,24] (see also Appendix B). As vn is kept static, mutual
friction dissipates energy at all length scales, implying that the turbulence thus generated is not
quasiclassical (where by the latter we intend a quantum turbulent flow where at large scales the two
fluid components are coupled by mutual friction and hence undergo a coupled energy cascade with
little dissipation until a length scale of ∼� is reached [5,25,26]). However, at scales larger than �, we
still do observe the emergence of an inertial-range energy cascade and the subsequent Kolmogorov
energy spectrum Ê (k) ∼ k−5/3 [see Fig. 4(a) and Appendix B], as the largest eddy turnover time
τD = (D2/ε)1/3 is never significantly larger than the mutual friction dissipative timescale τmf =
1/(ακL). Our computational box is not large enough that τD � τmf , which would make friction
dominant at large scales, creating a crossover to a k−3 scaling [26–29].

When in our simulations the mentioned Kolmogorov energy cascade reaches scales of ∼�, the
energy transfer towards smaller scales k � k� = 2π/� creates Kelvin waves (KWs) of shorter and
shorter wavelengths on individual vortex lines. In our temperature range (T � 1.3 K), this KW
cascade [30–32] is limited by the friction with the normal fluid [25,27,33].

In order to assess the effect of turbulent intensity on the rate of dissipation of kinetic energy,
ε, we choose 11 temperature values in the range 1.3 K � T � 2.16 K and 8 injection rates L̇inj =
(dL/dt )inj in the range 0.34 cm−2 s−1 � L̇inj � 22.50 cm−2 s−1. The saturation value L increases
with L̇inj and decreases with T . At saturation, on average L̇tot = L̇inj + L̇decay = 0, leading to L =√

2π L̇inj/(κχ2) [34], as confirmed by our numerical simulations [see Fig. 2(a)]. The values of χ2

extrapolated from our data are consistent with recent studies [35].
To extract values of the energy dissipation rate ε as a function of Res we select the numerical

simulations corresponding to a constant value of L̇inj (we choose L̇inj = 3.35 cm−2 s−1), implying
that the only varying physical parameter among the distinct simulations is T (or, equivalently, Res).
The selected simulations are enclosed in the red rectangle in Fig. 2(a) and the temporal evolution of
the vortex-line density L for this set of simulations at constant L̇inj is illustrated in Fig. 2(b). For each
Res, after the transient Teq, we calculate the dissipation rate ε at every time interval τ = 2π/(κL)
via the following integral,

ε(ti ) = 1

ρsD3

∮
T (ti )

fns(ξ, ti ) · ṡ(ξ, ti )dξ, (6)

where −fns = −γ0 ṡ − γ ′
0 s′ × ṡ is the mutual friction force per unit length which the normal fluid

exerts on a superfluid vortex-line element [10] (γ0 and γ ′
0 being a reformulation of mutual friction

coefficients α and α′), and T (ti ) is the configuration of the vortex tangle at time ti = Teq + iτ (with
i = 1, . . . , 10).

At the same times ti, we evaluate the root-mean-square velocity fluctuation U (ti ), where
3U 2(ti )/2 = E (ti ) is the turbulent kinetic energy per unit mass, and the turbulent integral scale
I (ti ) = π

2U 2

∫ ∞
0

Ê (k,ti )
k dk, where Ê (k, ti ) is the one-dimensional energy spectra so that E (ti ) =∫ ∞

0 Ê (k, ti )dk. Finally, we average over time ε, U , and I and compute the normalized energy
dissipation rate as ε̃ = 〈ε〉〈I〉/〈U 〉3 (〈·〉 indicating time-averaged quantities), in order to mimic the
normalization performed in classical turbulence. This procedure is repeated for each Res and the
curve ε̃(Res) is plotted in Fig. 3(a), red curve.

Figure 3(a) shows our main result: the normalized energy dissipation rate ε̃ decreases and then
flattens out as the superfluid Reynolds number Res is increased: the similarity with the classical
dissipation anomaly [1,2] is striking.

A. Interpretation of the results

We examine the geometry of the vortex tangle. Figure 3(b) shows the probability density function
(PDF) of the curvature ζ along the vortex lines as a function of Res. Clearly, increasing Res shifts
this distribution towards higher ζ and hence towards smaller length scales 1/ζ . The small-scale
(large-ζ ) vortex structures generated at lower temperatures survive because of the reduced friction
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FIG. 3. (a) Normalized energy dissipation rate ε̃ vs superfluid Reynolds number Res, at L̇inj =
3.35 cm−2 s−1. Red curve: Injected vortex-ring radius R = D/2. Green curve: R = D/8. Blue curve: R � �̄/2.
(b) probability density function of the curvature PDF(ζ ) (in cm) vs curvature ζ (in cm−1) at increasing Res, for
L̇inj = 3.35 cm−2 s−1 and R = D/2. Colors are the same as those in Fig. 2. The vertical dashed magenta line
marks the curvature of the injected rings ζ0 = 2/D.

dissipation and, as a consequence, the probability of observing structures at scales smaller than
� increases as Res increases (see Appendix C). The energy cascade towards small scales can be
described as a shift of PDF(ζ ) towards high curvatures, starting from the injected value ζ0 = 1/R
(see Appendix D).

As in classical turbulence, lower friction (decreasing values of α) leads to the excitation of
smaller scale motions. The flattening of the ε̃ curve can be understood using the following simple
argument which is only strictly valid for Vinen turbulence, but is likely to be applicable, at least
qualitatively, to other quantum turbulent regimes, as the dissipation stems from the small-scale
dynamics [see Fig. 4(b) and subsequent discussion], independently of the large-scale flow features.
The kinetic energy per unit mass f (t ) of a vortex ring of radius R at time t is f (t ) ∼ κ2R(t )/�̄3

(where �̄ is the average intervortex spacing at saturation). The dissipation rate ε is hence given by

ε = −df /dt = −κ2Ṙ/�̄3 = ακ3ζ/�̄3  ακ3ζ 4, (7)

where we have employed the well-known shrinking rate of a vortex ring in a quiescent normal
fluid, Ṙ ∼ −ακ/R [cf. Eq. (4)], and the relation 〈ζ 2〉 ∝ �̄−2 [14]. As Res increases, the decreasing
value of α is thus compensated by larger curvatures ζ on the vortex lines, flattening ε̃ as shown in
Fig. 3(a) (red curve). The presence of larger values of ζ (smaller structures) along the vortex lines
as Res increases is clearly visible in Figs. 1(a) and 1(b). This behavior is analogous to the scenario
observed in classical turbulence where the dissipation rate εclass = (ν/2)(∂vi/∂x j + ∂v j/∂xi )2 tends
to a finite constant as decreasing viscosity is balanced by increasing velocity gradients. Our results
hence show that the curvature of vortices in quantum turbulence plays the same role of enstrophy
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FIG. 4. (a) Time-averaged superfluid kinetic energy spectra Ê (k) (arbitrary units) as a function of wave
number k (cm−1) at saturation for L̇inj = 3.35 cm−2 s−1 and Res = 29 [Ê (k) for lower Res in Appendix B].
Vertical pink and oblique violet dashed lines indicate k� and the k−5/3 scaling, respectively. (b) Fraction ε<� of
total dissipation arising from length scales smaller than �. Colors, as in Fig. 3(a), refer to different radii of the
injected vortex rings.

in classical turbulence, as, in terms of dissipative effects, small-scale one-dimensional structures on
superfluid vortices correspond to the classical dissipative eddies.

To evaluate the importance of the smallest scales (k > k�) in dissipating the superfluid kinetic
energy, we calculate the fraction ε<� of total dissipation arising from the motion of vortex-line
elements with curvature ζ > 1/�. The result is illustrated in Fig. 4(b) (red curve) where we observe
that ε<� is larger than 0.75 for all Res. The value of ε<� close to 1 for the largest Res and its slight
decrease for decreasing Res stem from the fact that τmf → τD as Res → 0, consistent with previous
theoretical predictions [27].

This predominant role played by the smallest scales in the dissipation implies that the superfluid
analog to the classical dissipation anomaly does not depend on the mechanism transferring the
energy to such small scales. To show this independence from the largest scales, we repeat our
numerical experiment, injecting smaller rings of radii R = D/8 and R � �̄/2. These injection
protocols produce Vinen-like energy spectra which peak at intermediate scales [36], as shown in
Fig. 4(a) (green and blue curves). Despite this nonclassical aspect at large scales, the dissipation
anomaly is still clearly evident [see Fig. 3(a), green and blue curves]. This result does not depend
on the normalization, as shown in Appendix E.

B. Numerical resolution of the small length scales

As increasing Res excites smaller length scales along the vortex lines, it is natural to ask whether
our numerical discretization correctly resolves these small scales. To assess our numerical resolution
we have repeated all the simulations replacing δ with δ/2, and in the calculation of ε̃ we have
rejected the results of simulations which do not satisfy strict criteria regarding the saturation value L
and the curvature ζ (see Appendix F). In practice, our strict criterion limits us to temperatures above
T ≈ 1.3 K, above the appearance of scaling behavior for the KW cascade [30–32]. Therefore, our
model does not suffer the numerical dissipation at the small length scales which occurs in the VFM
if the temperature is set to zero [37].

IV. CONCLUSIONS

Our numerical investigation shows that to understand the small-scale dynamics of superfluid
turbulence one has to consider the full distribution of the curvature along the vortex lines, not
simply the average value. We have shown that superfluid turbulence displays the same dissipation
anomaly which is observed in classical turbulence: the effect of increasing the Reynolds number is
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FIG. 5. Superfluid kinetic energy time-averaged spectra Ê (k) (arbitrary units) as a function of wave number
k (cm−1) for L̇inj = 3.35 cm−2 s−1. Different colors refer to distinct values of Res: 1.25 (violet), 1.34 (gray),
1.50 (black), 2.06 (cyan), 2.51 (yellow), 3.30 (red), 4.96 (brown), 9.84 (light green), 13.09 (dark green), 19.66
(blue), and 29.00 (pink). (a) Radius of injected rings R = D/2. (b) Radius of injected rings R � �̄/2. The
dashed violet curve in panel (a) indicates the Kolmogorov k−5/3 energy spectrum.

the creation of smaller length scales. This result concerning the smallest length scales of turbulence
adds insight into the remarkable analogies between classical turbulence and superfluid turbulence
already noticed at the largest length scales [5,26]. It is a striking result, because it deals with length
scales smaller than the average intervortex distance, where classical and quantum turbulence have
always been believed to differ [29]. The role of the quantization of circulation is thus to constrain
these dissipative structures to live on vortex lines rather than in the bulk of the flow.

Our results illustrate the nature and the dynamical origin of the recent observation of a dissipation
anomaly obtained by forcing KWs in superfluid 3He-B [38], contributing to the lively debate
regarding in which turbulent systems dissipative anomaly manifests itself [39].
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APPENDIX A: APPLICATION TO 3He

In the numerical simulations with the VFM we use values of parameters relative to 4He: κ =
h/m = 9.97 × 10−7 m2/s (where h is Planck’s constant and m is the mass of one atom of 4He),
a0 ≈ 10−10 m, and α and α′ from Ref. [40]. However our main conclusions are also relevant to
3He-B for the following reasons.

(i) In 3He the relevant boson is a Cooper pair consisting of two 3He atoms (each having mass
equal to 3/4 of m); therefore, the quantum of circulation is 2/3 of the value in 4He. This difference
implies a small rescaling of the characteristic velocity, and hence of time, for example, when judging
the duration of numerical simulations, such as the simulations reported in Fig. 2(b).

(ii) The different values of the friction coefficients imply a simple rescaling of T , and hence of
Res in Figs. 3(a) and 4(b).

(iii) The mesoscopic length scales described by the VFM are much larger than the vortex-core
radius in both 4He and 3He (a0 ≈ 10−6 cm).

APPENDIX B: ENERGY SPECTRA

In this Appendix we illustrate the behavior of the time-averaged energy spectra Ê (k) for different
injected ring radii. In Figs. 5(a) and 5(b) we report the time-averaged spectra Ê (k) vs the wave
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FIG. 6. (a) PDF(ζ ) for Res = 1.25, 2.5, 9.8, and 29 (violet, orange, light green, and magenta solid lines,
respectively) for the set of simulations where the radius of the injected rings R = D/2. The vertical dashed
lines correspond to ζ� = 1/� for each Res. (b) Probability P(ζ > ζ�) of observing structures at length scales
smaller than � as a function of the superfluid Reynolds number Res.

number k for injected ring radii R = D/2 and R � �̄/2, respectively. The distinct curves reported in
Figs. 5(a) and 5(b) correspond to all values of Res employed in the numerical simulations (the color
legend coincides with the legend used in Fig. 2). The injection rate L̇inj = 3.35 cm−2 s−1 is fixed.

In Fig. 5(a) we observe that when the ring is injected at the largest scales of the flow, the energy
spectrum Ê (k) is precisely peaked at scale D. In addition, at these large scales we can observe
the emergence of a Kolmogorov k−5/3 spectrum. As illustrated in the main text, this Kolmogorov
spectrum does not imply that the quantum turbulence that we generate is quasiclassical (where
by the latter we intend a quantum turbulent flow where at large scales the two fluid components are
coupled by mutual friction and hence undergo a coupled energy cascade with little dissipation until a
length scale of ∼� is reached). As the normal fluid is in fact kept quiescent, the mutual friction force
acts at all length scales. However, given that the mutual friction characteristic timescale is never
sufficiently small when compared to the eddy turnover time, we still observe an the emergence of
an inertial-range Kolmogorov spectrum at all Res [26–29].

On the other hand, in Fig. 5(b), as the energy is injected at scales comparable to the average
intervortex spacing at saturation, we observe Vinen-like (often also called ultraquantum) energy
spectra, peaked at intermediate length scales, for all values of Res.

APPENDIX C: PROBABILITY OF OBSERVING SCALES SMALLER THAN �

In this Appendix, in Fig. 6(a) we report the probability density function of the curvature PDF(ζ )
for selected values of Res = 1.25, 2.5, 9.8, and 29, indicating the corresponding value ζ� = 1/�,
which increases for increasing Res. This figure is almost identical to Fig. 3(a), the only differences
being the the indication of ζ� and the selection of fewer values of Res in order to ease the readability
of the figure. On the basis of this data, we have calculated the probability P(ζ > ζ�) of observing
structures at length scales smaller than � as a function of the superfluid Reynolds number Res,
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FIG. 7. Temporal evolution of the PDF of the curvature ζ (in cm−1) for Res = 29 and L̇inj = 3.35 cm−2 s−1

(a) and for Res = 1.25 and L̇inj = 22.50 cm−2 s−1 (b). In both simulations, at saturation the vortex-line density
L is approximately equal to 120 cm−2 and the radius of the injected vortex rings is R = D/2. We clearly observe
the generation of smaller-scale structures when Res is larger.

reporting the results in Fig. 6(b). Figure 6 shows that structures at scales smaller than � exist and
that the probability of observing such small structures increases as Res increases.

APPENDIX D: TEMPORAL EVOLUTION OF CURVATURE

In this Appendix, we show the temporal evolution of the PDF of the curvature ζ . We focus on
two simulations, whose vortex-tangle snapshots are illustrated in Figs. 1(a) and 1(b). In the first sim-
ulation, Res = 29 and L̇inj = 3.35 cm−2 s−1 [corresponding temporal evolution of PDF(ζ ) reported
in Fig. 7(a)], and in the second simulation, Res = 1.25 and L̇inj = 22.50 cm−2 s−1 [PDFs shown
in Fig. 7(b)]. At saturation, in both numerical simulations the vortex-line density is approximately
equal to 120 cm−2.

In both simulations, the radius of the injected vortex rings is R = D/2 and the corresponding
curvature ζ = 1/R = 2/D is indicated in Figs. 7(a) and 7(b) by a magenta dashed vertical line. The
pattern which emerges from Fig. 7 is clear: as the rings are injected, by interacting and reconnecting
with the pre-existing tangle, smaller structures with corresponding higher curvatures are generated.
As Res is increased (or, equivalently, as temperature is decreased), the smaller value of the friction
coefficients allows the generation and the survival of smaller structures with higher values of
curvature: the resulting PDF(ζ ) is more shifted to the right. It is this generation of smaller-scale
structures as Res increases which is responsible for the observed plateau of the normalized kinetic
energy dissipation ε̃ at large Res, reported in Fig. 3(a), and which is the principal finding of our
work.
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FIG. 8. Time-averaged energy dissipation ε for Vinen turbulence obtained by injecting vortex rings of
radius R = �/2, corresponding to the blue curve of Fig. 3(a), normalized by ε� = vs(�)3/� ∼ κ3L

2
.

APPENDIX E: ALTERNATIVE NORMALIZATION FOR VINEN TURBULENCE

In Fig. 3(a), the energy dissipation rates of all data sets are normalized by the traditional factor
〈I〉/〈U 〉3 used in classical turbulence. This is because the main result (the red curve) refers to a
regime of quantum turbulence with the classical property that there is an inertial range where a
dissipationless cascade takes place.

Figure 3(a) shows also data (green and blue curves) which refer to regimes of Vinen-like quantum
turbulence: the same flattening of ε̃ at increasing Res is apparent because the analogy to the
classical dissipation anomaly is independent of the dynamics at the large scales of the flow. It is,
however, natural to ask how the curves would look using an alternative normalization. A dedicated
normalization factor for Vinen turbulence would be the characteristic dissipation rate at scales
comparable to the intervortex distance �, given by ε� = vs(�)3/� ∼ κ3L

2
. Using this normalization

factor, the resulting dissipation rate still resembles the classical counterpart, as shown for example
in Fig. 8.

APPENDIX F: NUMERICAL RESOLUTION OF THE SMALL LENGTH SCALES

As increasing Res excites smaller length scales along the vortex lines, it is natural to ask whether
our numerical discretization correctly resolves these small length scales. To assess our numerical
resolution we have repeated all the simulations, replacing δ with δ/2. In the analysis which leads
to the calculation of ε̃ [Fig. 3(a)], we have rejected the results of the simulations, identified by the
pair (Res, L̇inj ), which do not satisfy either of the following strict criteria: (i) the saturation value L
obtained using the two numerical resolutions are within 8% of each other, and (ii) the PDFs of the
curvature ζ overlap. The first criterion ensures that the turbulent intensity is correctly captured, while
the second is necessary in order to resolve accurately the curvature, which governs the dissipation
[Eq. (7)]. For example, Fig. 9(b) shows that for simulation (Res = 29, L̇inj = 3.35 cm−2 s−1) the
PDFs of the curvature do indeed overlap, and hence criterion (ii) is satisfied, while this is not the
case for simulation (Res = 49.45, L̇inj = 1.0 cm−2 s−1) [see Fig. 9(a)]. In Figs. 9(c) and 9(d)
we report the correspondent temporal evolution of the vortex-line density, showing the impact
of the resolution on this integral quantity: in terms of criterion (i) simulation (Res = 49.45,
L̇inj = 1.0 cm−2 s−1) lacks of spatial resolution along the vortex lines, while simulation (Res = 29,
L̇inj = 3.35 cm−2 s−1) is sufficiently resolved.

We remark that such strict criterion has not to our knowledge been used previously to test the
VFM at low temperatures or at high vortex-line density; existing work in literature was in fact mainly
concerned with properties at the large length scales, whereas here we are primarily concerned with
the smaller dissipation length scales. In practice, our strict criterion limits us to temperatures above
T ≈ 1.3 K, above [25,27,33] the appearance of scaling behavior for the KW cascade [30–32],
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FIG. 9. The left (right) column refers to simulation where Res = 49.45 and L̇inj = 1.0 cm−2 s−1 (Res = 29
and L̇inj = 3.35 cm−2 s−1). Blue (red) curves refer to spatial discretization δ = 0.02 cm (δ = 0.01 cm). (a) and
(b) PDF(ζ ) (in cm) vs curvature ζ (in cm−1). (c) and (d) Vortex-line density L (in cm−2) vs rescaled time t/τ ,
where τ = 2π/(κL̄), L̄ being the vortex-line density at saturation.

which, in the absence of dissipation, would shift energy to length scales of the order of a0, not
computationally resolvable by the VFM. At such short scales acoustic emission [41] and excitations
of Carol-Matricon states dissipate the turbulent kinetic energy.
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